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FOREWORD

SWOE Report 91-12, 31 May 1991, was prepared by J.R. Jones of SPARTA, Inc.,
Lexington, Massachusetts.

This report is a contribution to the Smart Weapons Operability Enhancement
(SWOE) Program. SWOE is a coordinated, Army, Navy, Marine Corps, Air Force and
DARPA program initiated to enhance performance of future smart weapon systems
through an integrated process of applying knowledge of the broadest possible range of
battlefield conditions.

Performance of smart weapons can vary widely, depending on the environment in
which the systems operate. Temporal and spatial dynamics significantly impact weapon
performance. Testing of developmental weapon systems has been limited to a few selected
combinations of targets and environment conditions, primarily because of the high costs of
full-scale field tests and limited access to the areas or events for which performance data
are required.

Performance predictions are needed for a broad range of background
environmental conditions and targets. Meeting this need takes advantage of significant
DoD investments by Army, Navy, Marine Corps and Air Force in 1) basic and applied
environmental research, data collection, analysis, modeling and rendering capabilities, 2)
extensive target measurement capabilities and geometry models, and 3) currently available
computational capabilities. The SWOE program takes advantage of these DoD
investments to produce an integrated process.

SWOE is developing, validating, and demonstrating the capability of this
integrated process to handle complex target and background environment interactions for
a world-wide range of battlefield conditions. SWOE is providing the DoD smart weapons
and autonomous target recognition (ATR) communities with a validated capability to
integrate measurement, information base, modeling and scene rendering techniques for
complex environments. The result of a DoD-wide partnership, this effort works in concert
with both advanced weapon system developers and major weapon system test and
evaluation programs.

The SWOE program started in FY89 under Balanced Technology Initiative (BTI)
sponsorship. Present sponsorship is by the U.S. Army Corps of Engineers (lead service),
the individual services, and the Joint Test and Evaluation (JT&E) program of the Office of
the Director of Defense Research and Engineering (DDR&E), Office of the Secretary of
Defense (OSD).

The Program Director is Dr. L.E. Link, Technical Director of the U.S. Army, Cold
Regions Research and Engineering Laboratory (CRREL). The Program Manager is Dr. J.P.
Welsh, CRREL. The Integration Manager is Mr. Richard Palmer, CRREL. The task areas
and their managers are as follows: Modeling Task Area, LTC George G. Koenig, USAF,
Geophysics Laboratory (GL), of the Air Force Phillips Laboratories; Information Bases
Task Area, Mr. Harold W. West, PE, U.S. Army Engineer, Waterways Experiment Station
(WES); Scene Rendering Task Area, Mr. Mike Hardaway, Corps of Engineers,
Topographic Engineering Center (TEC); Validation Task Area, Dr. Jon Martin,
Atmospheric Sciences Laboratory (ASL) of the Army Materiel Command.
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User’s Guide for TREETHERM:
A 3-D Thermal Model for Single Trees

1 INTRODUCTION

TREETHERM is a three dimensional thermal code that models a single tree’s
response to environmental boundary conditions. Written in the C programming
language, the model includes heat transfer due to conduction, solar absorption,
surface convection due to wind, infrared absorption and surface reradiation. The
model allows the user to disable the various boundary conditions in order to perform
sensitivity studies. The model also includes an option to allow the shading effects
and attenuation effects due to leaves.

1.1 Purpose of Report

This report is a User’s Guide to the operation of the code. Descriptions of the
various code options and how to implement them are provided. Also given are
descriptions of the data files that are required to operate the code. Detailed descrip-
tions of the physics used in developing the model are provided in the companion
technical report.! )

Hummel, J.R., Jones, J.R., Longtin, D.R., Paul, N.L., (1991) “Development of a 3-D Tree Ther-
mal Response for Energy Budget and Scene Simulation Studies,” Phillips Laboratory, Hanscom
AFB, Massachusetts, PL-TR-91-2108, 15 March.
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1.2 Organization of Report

Section 2 provides an overview of the model including a description of the co-
ordinate system and basic terminology. Section 3 describes the input requirements
for the model. Section 4 describes the output provided by the code. Section 5
provides some examples from the model. Finally, Section 6 discusses some of the
assumptions made in the development of the code and their limitations.

2 OVERVIEW OF TREETHERM

There are two versions of the model available for the user. The first version
models a single tree element like a tree trunk. The second version allows a user
to model a tree consisting of many segments.

The single segment version includes greater spatial resolution than the multiple
segment version and is useful for studying the detailed thermal structure in a
tree element. The multiple segment version models the interactions between tree
elements and can include shading and solar attenuation due to leaves.

2.1 Overview of Numerical Method

The code uses an electrical analog to the general heat balance equation for
heterogeneous, anisotropic materials as given as?

/)C%:g— = 5% (kx-g%) + ’3% (ky%%) + 56; (kz%%) + Qx,y,z,t (1)

where p is density of the tree material in kg/m3, c is the specific heat in J/kg-K, T
is the temperature in K, ¢ is the time in seconds, &, ky, k. are the conductivities
in the z,vy, z directions in W/m-K, and Qz,y,2,¢ is the total surface flux. The par-
tial derivatives are approximated with finite differences using the Crank-Nicolson
method. The model is divided into a set of elements whose calculated tempera-
tures are assumed constant over an element’s spatial boundaries. A more detailed
description of the implementation of the energy balance in contained in the thermal
response section of the report this User’s Guide accompanies. A flow chart of the
code execution is shown in Figure 1.

The tree model global coordinate system is based on a Cartesian system. In
this approach, the X-axis is north, the Y-axis is west, and the Z-axis is vertical, as
shown in Figure 2.

Duncan, T. C., Farr, J.L., Wassel, T., and Curtis, R. J., Satellite Laser Vulnerability Model,
Thermal Model User’s Guide, Air Force Weapons Laboratory, (Software Documentation).
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Figure 1. Flowchart of Tree Model Code Execution
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2.2 Basic TREETHERM Terminology

The overall tree model is composed of cylindrical sections termed tree segments
or tree elements. The limits of these tree segments are defined by input nodal
coordinates and segment outer diameter. The segments are divided into rings and
these rings are then sectioned. These are called calculation elements. Each ring
may have a different material property. A tree segment may have a leaf cluster
around it. In Figures 3 and 4, tree element 9 is defined as from node 8 to node
9. It has a leaf cluster diameter of 2 meters. In this example it is composed of
three rings which may have different material properties. The outer diameters of
these rings are 0.25, 0.50, 0.75 meters. The inner ring is composed of calculation
elements 73, 74, 75, and 76.

The starting or from node should be the closest in a path along tree segments
towards the root node. The sense of the from-to direction is away from main
segments towards the ends of the tree model.

Internally, the tree segment has a local coordinate system defined as positive
local z in the from-to direction. The local X-axis is parallel to the model global
XY plane and is determined by a cross product as follows:

XL = ZL X ZG (2)
The local Y-axis is given by
}A/L = ZL X XL' (3)

In the above, X L A’L, and Zy are the unit vectors parallel to the tree segment’s
local z,y, z axes, respectively, and ZG is the unit vector parallel to the model
global Z-axis. The calculation elements are numbered consecutively, starting in
the inner ring in the first quadrant (local system), then counterclockwise (CCW)
around the ring, then to the next ring. The local system definition and calculation
numbering scheme is required to choose output for a specific calculation element.

2.3 Executing The Code

The current version of TREETHERM is executed from the command line with
a set of command line arguments as follows:

prompt > TREETHERM inputfile echofile modeltype outputfilel outputfile2

where
TREETHERM : Name of the executable code
input file : Name of the user designated input file
echofile : Name of the user designated echo file of inputfile
modeltype : Model type option. This is a case sensitive character

4
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string. Allowed strings are: TREE, OneTreeSegment
output filel : Name of the user designated output file 1
output file2 : Name of the user designated output file 2

The file names have to be compatible with the target operating system. The user
is cautioned that TREETHERM does not check to see if the specificed output files
exist or not, i.e., existing files will be overwritten.

Model types “TREE” and “OneTreeSegment” invoke the tree model multiple
and single tree segment options, respectively. For the specified tree model option,
the selected calculation element temperature history output is placed in outputfile2.
The temperatures of surface calculation elements or all calculation elements of
selected segments are available at the time intervals of the meteorological data.
This output is put in outputfilel.

3 INPUT REQUIREMENTS

This section deals with the format of the main input file and the material
property files for the different model options. In general, related input is grouped
in sections. For each section of data, there will be a header line of description
strings, and the data section will be terminated by a closing end statement. In
between the header and closing end statement, the input format is generally a set
of descriptive strings followed by the input value.

3.1 Single Tree Segment Option

Figure 5 shows the input requirements for a calculation using the single tree
segment model. The data are grouped into sections that contain data of different
types. Table 1 to 6 describe the data contained in each of the input sections for
the single tree segment model option.

Table 1 describes the data required to specify the various model options. These
data specify the type of model calculation (single or multiple tree segment), the
number of internal tree elements, the sources of the input data files, the surface
boundary conditions being considered, the location of the tree, and temperature
units. Table 2 describes the data required to specify the material properties. Table 3
describes the data required to specify the geometry for the calculations with a
single tree segment. This section of data specifies how the tree is being divided
into calculation elements. The section inputs how many rings, their diameters, the
material properties associated with the rings, and how many segments. Table 4
describes the data required to specify the nodal geometries. These data specify
where in 3-D space the nodes are located. Table 5 describes the data required
to initialize the temperature calculations. Finally, Table 6 describes the input

6




Option, Boundary INPUT
Conditions SECTION 1 ‘

Property Files INPUT
List «—— SECTION 2

Single Segment INPUT
Geometry «—— SECTION 3

Nodal INPUT
Coordinates «——— SECTION 4

Temperature INPUT
Initialization «——— SECTION 5

INPUT
Suipst |« SECTION 6

Figure 5. Input Requirements When Specifying the Single Tree Segment Option

required to control the output produced by the model. These data specify for
what elements output is produced. TREETHERM produces voluminous output,
and these parameters help the user to produce only those output results required.

In the Tables, the input format for each line of data is given along with examples,
the data type, and some additional comments. All of this input data must be
contained in the same input file. The input filename is referenced as an argument
in the command line (see Section 2.3). Figure 6 gives an example of the data that
would be used for a calculation with the single tree element option.
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MODEL TYPE TREE 3
NUMBER NODES 2

NUMBER TREE ELEMENTS 1

METEOROLOGICAL DATA FILE hunt262

SURFACE BOUNDARY CONDITIONS SOLAR IR CONVECTION NONE

IR ESTIMATE Input Section 1
SOLAR ESTIMATE ? See Table 1
NUMBER TREE PROPERTY FILES 1

TIME ZONE 8

LATITUDE 36 DEG 0 MIN 0.0 SEC

LONGITUDE 121 DEG 19 MIN 0.0 SEC

INPUT TEMPERATURES CELCIUS

OUTPUT TEMPERATURES CELCIUS

LEAF PROPERTY FILE NONE /
END

PROPERTY FILES Input Section 2
hltree.prop See Table 2
END

TREE SINGLE SEGMENT

NUMBER RINGS 6
NUMBER SEGMENTS 36 Input Section 3
OUTER RING RADII .02 .04 .06 .08 .1 .12 ( See Table 3
RING MATERIAL NUMBER 1 11 11 1

END J

TREE NODAL COORDINATES
ROTATE Z 0.0 DEG
1:0.0 0.0 0.0 }Input Section 4
2:0.0 0.0 1.0 See Table 4

END

VERTICAL TEMPERATURE PROFILE

NENTRY 2
HEIGHT 0.0 50.0 Input Section §
TEMPERATURE 13.0 13.0 ( See Table 5
END
Y
TREE OUTPUT CONTROL )

NUMBER TEMPERATURE HISTORY 8
TEMPERATURE HISTORY ELEMENTS 185 194 203 212

110 19 28
NUMBER TREE SURFACE ELEMENTS 1 }Input Section 6
TREE ELEMENTS 1 See Table 6
NUMBER TREE ELEMENTS 1
TREE ELEMENTS 1
END J

Figure 6. Example Input File for a Calculation Using the Single Tree Segment
Option
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3.2 Multiple Tree Segment Option

Figure 7 shows the input flow for the multiple tree segment option. Tables 7 to
13 correspond to the input sections labeled in Figure 7. All this information must
be contained in the same file which is referenced as a command line argument.
(See Executing Code Section 2.3.)

Options, Boundary INPUT
Conditions s Ec Tlo N 1

Property Files INPUT
’-l’“ «—— SECTION 2
Nodal INPUT

Coordinates «—— SECTION 3

|
Element Type INPUT
Start/End Limits | SECTION 4

Element Geometry INPUT
Materlal Reference | «— SECTION 5

Temperature INPUT
Initialization «—— SECTION 6

Output INPUT
Control «— SECTION 7

Figure 7. Input Requirements for Multiple Tree Segment Option
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The data requirements for the Multiple Tree Segment Option are similar to those
for the Single Tree Segment Option. The primary differences between the two
options is that the user must now specify the nodal coordinates of the individual
tree components (in Input Section 3), the type of each tree element and where
they start and stop (in Input Section 4), and the diameters and material property
references of the elements (in Input Section 5). Figure 8 shows an example input
file for the Multiple Tree Segment option.

Figure 9 shows the relations between the tree element physical connection and
the description of a connection type that is required as input for the multiple tree
segment option. The connection type description is input in Input Section 4 of the
multiple tree segment option. Table 10 contains the format for that input section.

3.3 Leaf Properties File Format

TREETHERM includes a separate leaf energy budget model! that can be turned
on and off depending on the user’s requirements. Leaves are only available when
the Multiple Tree Segment Option is invoked. Self-shading from the branches
and leaf clusters can also be included, via the use of a ray-tracing routine,! by
including shading in the boundary conditions by adding the string SHADING in
Line 5 of Input Section 1 of the Multiple Tree Segment option. The calculation of
leaf temperatures is performed via the addition of a valid leaf property file name
i Line 14 of the Input Section 1, Table 7). Table 14 gives the input format for
the leaf property file and Figure 10 lists a sample leaf property file. It is noted that
the user can calculate leaf temperatures without invoking the self-shading option,
which is very computationally intensive.

3.4 Meteorological File Format

The meteorological file name is read in as Line# 4 of Input Section 1 (see
Tables 1 and 7). The meteorological data file consists of 19 columns of data, which
are described in Table 15. The maximum time interval for the meteorological data
is currently set at one hour (3600 secs). The meteorological data file used by
TREETHERM is the same as that used in the Interim Thermal Model ITM).3

Both TREETHERM and the ITM can either utilize data of solar and infrared
fluxes or calculate those values using the Preliminary Atmospheric Radiation
Package.3 The latter choice is selected via the use of the character string ES-
TIMATE in Input Section 1. If this option is selected, one can account for the
effects of clouds. Table 16 describes the cloud types that can be accounted for.

Hummel, J.R., Longtin, D.R., Paul, N.R., and Jones, J.R. (1991) “Development of the Smart
Weapons Operability Enhancement Interim Thermal Model,” Phillips Laboratory, Hanscom AFB,
Massachusetts, PL-TR-91-20073, March.
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MODEL TYPE TREE \
NUMBER NODES 4
NUMBER TREE ELEMENTS 3
METEOROLOGICAL DATA FILE  hunt262
SURFACE BOUNDARY CONDITIONS SOLAR  NONE NONE NONE
IR ESTIMATE
SOLAR DATA LInput Section 1
NUMBER TREE PROPERTY FILES 2 See Table 7
TIME ZONE 8
LATITUDE 36 DEG O MIN 0,0 SEC
LONGITUDE 121 DEG 19 MIN 0.0 SEC
INPUT TEMPERATURES CELCIUS
OUTPUT TEMPERATURES CELCIUS
LEAF PROPERTY FILE NONE

END

PROPERTY FILES 1 Input Section 2

hltree.prop hl2.prop See Table 8
END

TREE NODAL CODRDINATES }
ROTATE Z 0.0 DEG
1: Input Section 3

} See Table 9

cocoo
cocoo
cococo
cocoo

W= O
O OO0 O

2:

3:

4
END

TREE ELEMENT CONFIGURATION )
1 TRUNKM 12 Input Section 4
2 TRUNK M 23 See Table 10
3 TRUNK M 3 4
END

TREE ELEMENT DESIGNATION )
1:0.16 0.256 0.30 0.0 : 111 Input Section &
2 :0,156 0.256 0.30 0.0 : 22 2 See Table 11
3:0.150.26 0.300.0 : 111

END

VERTICAL TEMPERATURE PROFILE )
NENTRY 2 Input Section 6
HEIGHT 0.0 50.0 See Table 12
TEMPERATURE 12.8 12.8

END

TREE OUTPUT CONTROL
NUMBER TEMPERATURE HISTORY 12 \
TEMPERATURE HISTORY ELEMENTS 9 10 11 12
21 22 23 24
33 34 35 36 Input Section 7
NUMBER TREE SURFACE ELEMENTS 3 ? See Table 13
TREE ELEMENTS 123
NUMBER TREE ELEMENTS 1
) TREE ELEMENTS 1
END J

Figure 8. Example Input File for Multiple Tree Segment Option
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START CONNECTION
— ELEMENT VPE

NOUAWN=
Ao

| o

Figure 9. Example of the Types of Tree Element Connections for the Multiple
Tree Segment Option

Figure 11 is an example of the meteorological data required by TREETHERM.
This example is of data from Hunter-Liggett, California.

3.5 Property File Format

Material properties are required to describe the thermal properties of the differ-
ent materials assumed in the tree. Table 17 describes the individual input values
required in the tree property file.

Material properties can be temperature independent or dependent. To use con-
stant temperature properties throughout, set the variable CONSTANTPROPS to 1.
If one or more properties are temperature dependent, set CONSTANTPROPS to 0.
To use a constant temperature property (Lines 4-9 of Table 17) along with tempera-
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Table 14. Leaf Property File Format

REQUIRED EXAMPLE DATA
LINE # DESCRIPTIVE STRING(s) VALUE(s) TYPEf COMMENTS

1 LEAF INPUT PARAMETERS N/A N/A Header statement for the
. input section.

NUMBER DENSITY 98.0 F  Number of leaves per cluster
3 AREA 0.0030591 F  Area of individual leaf (m)
TRANSMISSIVITY 0.50 F  Shortwave transmissivity
of leaf
5  ABSORPTIVITY 0.25 F  Shortwave absorptivity of leaf
REFLECTIVITY 0.25 F  Shortwave reflectivity of leaf
DIFFUSE REFLECTIVITY 0.25 F  Shortwave diffuse reflectivity
of leaf
IR EMISSIVITY 0.90 F  Infrared emissivity of leaf
IR ABSORPTIVITY 0.90 F  Infrared absorptivity of leaf
10 WIDTH 0.05 F  Width of leaf (m) based on
assumption of circular leaf
11  DIFFUSION RESISTANCE 1.0 F  Diffusion resistance of
leaf (sec/m)
12 SURFACE ALBEDO 0.15 F  Surface albedo of underlying
surface
13 END N/A N/A Closing statement for the

input section.

t I = Integer F = Float S = String

LEAF INPUT PARAMETERS
NUMBER DENSITY 500.0
AREA 0.0030591
TRANSMISSIVITY 5
ABSORPTIVITY
REFLECTIVITY
DIFFUSE REFLECTIVITY
TR EMISSIVITY
IR ABSORPTIVITY .97
WIDTH .05
DIFFUSION RESISTANCE 6.0
SURFACE ALBEDOD 0.15
END

.25
.60
.60
.97

COOOOOO0

Figure 10. Example of a Leaf Property File Used by the Leaf Energy Budget
Model in TREETHERM
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Table 15. Meteorological File Format

COLUMN# DESCRIPTION

DATA TYPE COMMENTS

1

O 00 N O i AW N

e e T e T S S Gy G G S Sy
00~ N U A WD - O

19

Year

Julian Day

Hour of Day
Minute

Pressure

Air Temperature
Relative Humidity
Wind Speed
Wind Direction

Total Solar

Directed Solar
Diffuse Solar
Downward IR*

Fractional Cloud Cover High Layer
Cloud Type for High Cloud Layer
Fractional Cloud Cover Middle Layer
Cloud Type for Middle Cloud Layer
Fractional Cloud Cover Low Layer
Cloud Type for Low Cloud Layer

— T =~ T =~ =~ T I T '™ T T T e e e

Last 2 digits of year
0 = Midnight

mb

Cor Kt

%

m/s

deg

W/mQI
W/m2i
W/m?

W/m?
Range: 0 -1
See Table 16
Range: 0 - 1
See Table 16
Range: 0 -1
See Table 16

t Must correspond to units specified in Input Section 1 (Table 1 or 7)
! Assumed on horizontal surface. Code resolves magnitude and vector of incident solar.

* If value = 0 surfaces will radiate to the background air temperature unless the string ESTIMATE
is included in Line# 6 of Input Section 1

Table 16. Description of Required Cloud Cover Information

CLOUD TYPE
CODE LAYER CLOUD TYPE
1 High  Thin Cirrus
2 High  Thick Cirrus
3 Middle Middle Cloud
4 Low Stratus
5 Low Cumulus or Cumulonimbus
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89 261 22 0 969.0 13.0 70.0 0.44 135.2 0.0 0.0 0.0 281.80.0 0 0.00 0.0 O
89 261 23 0 969.0 11.5 80.0 0.37 131.6 0.0 0.0 0.0 277.6 0.0 0 0.00 0.0 O
89 262 0 0 969.0 10.8 89.0 0.30 128.0 0.0 0.0 0.0 276.80.0 0 0.00 0.0 O
89 262 1 0 968.8 10.6 89.0 0.31 128.0 0.0 0.0 0.0 275.80.0 0 0.00 0.0 O
89 262 2 0 969.2 10.5 90.0 0.67 76.0 0.0 0.0 0.0 275.50.0 0 0.00 0.0 O
89 262 3 0 969.2 9.4 90.0 0.05 76.0 0.0 0.0 0.0 269.90.0 0 0.00 0.0 0
89 262 4 0 969.4 9.5 91.0 0.21- 91.0 0.0 0.0 0.0 270.70.0 0 0.00 0.0 O
89 262 5 0 969.0 8.9 89.0 0.01 160.0 0.0 0.0 0.0 267.10.0 0 0.00 0.0 O
89 262 6 0 969.0 8.3 92.0 0.01 160.0 13.4 6.6 6.8 264.90.0 0 0.00 0.0 O
89 262 7 0 969.0 10.6 89.0 0.01 160.0 189.7 135.9 53.8 275.80.0 0 0.00 0.0 O
89 262 8 0 969.0 13.3 77.0 0.01 160.0 416.9 346.3 70.5 286.00.0 0 0.00 0.0 O
89 262 9 0 969.0 16.7 61.0 0.01 160.0 626.6 547.7 79.0 297.6 0.0 0 0.00 0.0 O
89 262 10 0 969.0 17.2 58.0 3.00 160.0 780.3 690.4 90.0 298.90.0 0 0.00 0.0 O
89 262 11 0 969.0 18.9 45.0 1.00 190.0 869.7 769.8 99.9 301.10.0 0 0.00 0.0 O
89 262 12 0 969.0 20.6 44.0 2.00 240.0 862.3 719.3 143.0 319.3 0.0 0 0.0 0 0.13 5
89 262 13 0 969.0 22.8 41.0 1.00 140.0 829.9 689.0 140.9 329.50.0 0 0.00 0.135
89 262 14 0 969.0 23.3 39.0 2.00 170.0 734.4 599.8 134.7 330.8 0.0 0 0.00 0.135
89 262 15 0 969.0 23.9 40.0 1.00 160.0 576.9 452.2 124.7 335.0 0.0 0 0.00 0.13 5
89 262 16 0 969.0 24.3 41.0 0.92 156.5 407.6 337.4 70.2 328.20.0 0 0.00 0.0 O
89 262 17 0 969.0 22.8 44.0 0.84 152.9 181.0 128.5 52.5 321.80.0 0 0.00 0.0 O
89 262 18 0 969.0 20.6 48.0 0.76 149.4 8.3 4.0 4,3 312.10.0 0 0.00 0.0 O
89 262 19 0 969.0 18.9 63.0 0.68 145.8 0.0 0.0 0.0 305.6 0.0 0 0.00 0.0 O
89 262 20 0 969.0 17.5 59.0 0.60 142.3 0.0 0.0 0.0 301.00.0 0 0.00 0.0 O
89 262 21 0 969.0 16.0 65.0 0.52 138.7 0.0 0.0 0.0 295.6 0.0 0 0.00 0.0 O
89 262 22 0 969.0 13.0 70.0 0.44 135.2 0.0 0.0 0.0 281.80.0 0 0.00 0.0 O
89 262 23 0 969.0 11.5 80.0 0.37 131.6 = 0.0 0.0 0.0 277.6 0.0 0 0.00 0.0 O
89 263 0 O 969.0 10.8 89.0 0.30 128.0 0.0 0.0 0.0 276.80.0 0 0.00 0.0 O

Figure 11. Example of the Meteorological File Used by TREETHERM. This
example is for Hunter-Liggett, California

ture dependent properties, set the corresponding input value for the number of table
entries (parameters NCP, NKX, NKY, NKZ, NEMIS, and NABS in Table 17) to
0 and do not input the applicable table values (Lines 17-40) in the property file. If
temperature dependent properties are used, each calculation element has to update
each temperature dependent property (via interpolation) at each time step. This
will significantly increase the code computational time, especially as the model
becomes more complex.

When the HOMOGENEOUS flag is input as 1, the model assumes there will
be no variations in the conductivities. Therefore, the k; conductivity will be used
for the ky and k, conductivities. This can reduce computation time for models of
homogeneous material with temperature dependent conductivity. Figure 12 is an
example of a tree property file. Each of the different materials in the tree must
have such a file.

25




Table 17. Description of Input Values in a Tree Material Property File

REQUIRED EXAMPLE
LINE# DESCRIPTIVE STRING(s) VALUE(s) TYPE! COMMENTS
1 CONSTANTPROPS 0 I 1 = Constant Temperature
0 = Temperature Dependent
2 HOMOGENEOUS 0 I 0 = Use z,y, z conductivities
1 = Use z conductivity
3 RHO 900.0 F Density (kg/m3)
4 Cp 2900.0 F Specific Heat (J/kg-K)
5 XK 0.15 F z Conductivity
6 YK 0.30 F y Conductivity
7 ZK 0.30 F z Conductivity
8 EMIS 0.80 F Surface Emissivity
9 ABS 0.55 F Solar Surface Absorptivity
10 IRABS 1.0 F IR Surface Absorptivity
Following Lines are Optional. Read if CONSTANTPROPS = 0
11 NCP 2 I # of Entries in Cp,(T') Table
12 NKX 2 I # of Entries in k(T Table
13 NKY 2 I # of Entries in ky(T') Table
14 NKZ 2 I # of Entries in k,(T) Table
15 NEMIS 2 I # of Entries in ¢(T") Table
16 NABS 2 I # of Entries in «(T") Table
Following Lines are Optional. Read if CONSTANTPROPS = 0
and NCP, NKX, NKY, NKZ, NEMIS, or NABS > 0
17 CPTAB Section Header for Table

200 400 F Temperature for Cp(T) (K)
2600 2700 F Cp(T) (J/kg-K)
Closing Statement

Section Header for Table
200 400 F Temperature for k,(T) (K)
0.15 0.16 F kz(T) (W/m-K)

Closing Statement

Section Header for Table
Temperature for ky(T) (K)
ky(T) (W/m-K)

Closing Statement

200 400
0.31 0.32

igsBlles!

Section Header for Table
200 400 F T for k,(T) (K)
0.33 0.36 F k(T) (W/m-K)

Closing Statement

t1= Integer F = Float S = String
26




Table 17. Tree Material Property File (Continued)

REQUIRED EXAMPLE
LINE# DESCRIPTIVE STRING(s) VALUE(s) TYPE! COMMENTS
33 EMISTAB Section Header for Table
34 200 400 F Temperature for ¢(T) (K)
35 _ 09 0.9 F e(T)
36 END Closing Statement
37 ABSTAB Section Header for Table
38 200 400 F Temperature for a(T") (K)
39 0.55 0.60 F a(T)
40 END Closing Statement
T I = Integer F = Float S = String

Notes Concemning Tree Material Property File

— Maximum temperature dependent table length is 10 items

_ The temperature dependent conductivities, k¢ (T'), ky(T), k-(T) in the tree
model correspond to radial, circumferential, and longitudinal directions

— ¢(T) Temperature dependent emissivity
— (T Temperature dependent solar absorptivity
— T Temperature
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CONSTANTPROPS 1
HOMOGENEQUS 0

RHO 900.0
CP 2900.0
XK 0.15
YK 0.3

ZK 0.3
EMIS 0.80
ABS 0.55
IRABS 1.00
NCP
NKX
NKY
NKZ
NEMIS
NABS

NNDODNDNN

CPTAB

100 200
2900 2900
END

KXTAB

100 200
0.15 0.15
END

KYTAB

100 300
0.30 0.30
END

KZTAB

100 400
0.30 0.30
END

EMISTAB
100 200
1.0 1.0
END

ABSTAB
100 200
1.0 1.0
END

Figure 12. Example of a Tree Material Property File
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4 OUTPUT FORMAT

TREETHERM is rich in output possibilities. As implied by the output choices
made in the Input Section 6, for the Single Tree Element Option, and Input Section
7, for the Multiple Tree Element Option, the user can study the temperature history
of any or all computational elements. Due to the voluminous amounts of output
possible, especially for the Multiple Tree Segment Option, the user is urged to
carefully consider what types of output to request.

Two primary types of output are available. The first is the detailed temperature
history of the selected tree elements at all time steps. The second is the temperature
history at only the time intervals in the meteorological data file. The former is
useful for studying the detailed thermal response of the woody material of the tree
to changes in the energy balance while the latter is useful for general simulation
studies.

Figure 13 is an example of the detailed temperature history output for a calcu-
lation element. This first column is the model time in seconds. The model time
is initialized to the first time in the meteorological data file, expressed in seconds.
All subsequent timesteps are incremented by the calculation time step. It is noted
that the calculation timestep is not constant.! The second is the air temperature,
echoed from the meteorological data file. The third is a representative leaf temper-
ature if leaf properties are input. If leaves are not included, which is the case for
the Single Tree Option or if the string NONE is included in line 14 of the Mul-
tiple Tree Option Input Section 1, then column 3 contains the temperature of the
first tree element selected for temperature history output. The rest of the columns
are the temperatures for the elements selected in the output control section of the
input. (Tables 6 or 13, Line 3.) This type of output is available when a detailed
temperature history is required for the selected calculation elements.

79205.000 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
79210.500 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
79216.547 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
79223.203 12.99 12.99 12.99 12.99 13.00 13.00 13.00 13.00
79230.523 12.99 12.99 12.99 12.99 13.00 13.00 13.00 13.00
79238.578 12.99 12.99 12.99 12.99 13.00 13.00 13.00 13.00
79247.438 12.99 12.99 12.99 12.99 13.00 13.00 13.00 13.00
79257.180 12.98 12.98 12,98 12.98 13.00 13.00 13.00 13.00
79267.898 12.98 12.98 12.98 12.98 13.00 13.00 13.00 13.00
79279.688 12.98 12.98 12.98 12,98 13.00 13.00 13.00 13.00
79292.656 12.97 12.97 12.97 12.97 13.00 13.00 13.00 13.00
79306.922 12.97 12.97 12.97 12.97 13.00 13.00 13.00 13.00
79322.617 12.96 12.96 12.96 12.96 13.00 13.00 13.00 13.00
79339.875 12.96 12.96 12.96 12.96 13.00 13.00 13.00 13.00
79358.859 12.95 12.95 12.95 12.95 13.00 13.00 13.00 13.00

Figure 13. Example of the Temperature History Output Produced by TREETHERM
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Figure 14 is a reduced example of the output available at the meteorological
time data intervals. The time and the current meteorological parameters are printed
out. Although not shown in Figure 14 a representative leaf temperature is available
at the meteorological data intervals if leaf properties are input. Then, calculation

element temperatures for the selected tree elements are printed out. The format for
an individual calculation element is:

EL

where

EL:
Ty, Yg, Zg:
Loy Y, 2¢-

T:

Tg Yg 29 Ty Yo 2p T

Calculation element number

Model global coordinates (m) where calculation takes place

For tree element local coordinates (m) where calculation takes
place

Temperature (°C or K)

The output shown in Figure 14 represents the model state at a snapshot in time.
This output is available when the spatial variations in the temperature predictions
are required.
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.............................................

START OUTPUT
YEAR = 89 DAY= 262 HOUR= 6 MINUTE = O

Pressure= 969.0 mb Air Temperature= 8.3 Deg ¢ RH= 92.0
Vind Speed = 0.0 m/s Wind Direction= 135.2 Deg

Solar= 13.4 w/m"2 Direct= 6.6 w/m"2 Diffuse= 6.8 w/m"2 IR= 265.0 w/m~2
Cloud Layer-> 0 Type 0 Cover 0.00 :

Cloud Layer-> 1 Type 0 Cover 0.00

Cloud Layer-> 2 Type 0 Cover 0.00

Tree Element 1. Surface Calculation Elements->

181 3.138e-01 2.745e-02 5.000e-01 3.138e-01 2.745e-02 0.000et+00 8.279
182 3.043e-01 8.153e-02 5.000e-01 3.043e-01 8.153e-02 0.000e+00 8.279
183 2.855e-01 1.331e-01 5.000e~01 2.855e-01 1.331e-01 0.000e+00 8.279
184 2.580e-01 1.807e-01 5.000e-01 2.580e-01 1.807e-01 0.000e+00 8.279
186 2.227e-01 2.227e-01 5.000e-01 2.227e-01 2.227e-01 0.000e+00 8.279
186 1.807e-01 2.580e-01 5.000e-01 1.807e-01 2.580e-01 0.000e+00 8.279
187 1.331e-01 2.855e-01 5.000e-01 1.331e-01 2.855e-01 0.000e+00 8.279
188 8.153e-02 3.043e-01 5.000e-01 8.153e-02 3.043e-01 0.000e+00 8.279
189 2.745e-02 3.138e-01 5.000e-01 2.745e-02 3.138e-01 0.000e+00 8.279

190 -2.745e-02 3.138e-01 5.000e-01 =-2.745e-02 3.138e-01 0.000e+00 8.279
191 -8.153e-02 3.043e-01 5.000e-01 =-8.153e-02 3.043e-01 0.000e+00 8.279

2i4 2.855e-01 =-1.331e-01 5.000e-01 2.855e-01 -1.331e-01 0.000e+00 8.279

215 3.043e-01 -8.153e-02 5.000e-01 3.043e-01 -8.153e-02 0.000e+00 8.279
216 3.138e-01 -2.745e-02 5.000e-01 3.138e-01 -2.745e-02 0.000e+00 8,279
Tree Element 1. Calculation Elements->

1 2.490e-02 2.179e-03 5.000e-01 2.490e-02 2.179e-03 0.000e+00 13.000

2 2.415e-02 6.470e-03 5.000e-01 2.415e-02 6.470e-03 0.000e+00 13.000

3 2.266e-02 1.057e-02 5.000e-01 2.266e-02 1.057e-02 0.000e+00 13.000

4 2.048e-02 1.434e-02 5.000e-01 2.048e-02 1.434e-02 0.000e+00 13.000

5 1.768e-02 1.768e-02 5.000e-01 1.768e-02 1.768e-02 0.000e+00 13.000

6 1.434e-02 2.048e-02 5.000e-01 1.434e-02 2.048e-02 0.000e+00 13.000

7 1.057e-02 2.266e-~02 5.000e-01 1.057e-02 2.266e~02 0.000e+00 13.000
213 ,580e-01 =-1.807e-01 5.000e-01 .580e-01 -1.807e-01 0.000e+00 8.279

.855e-01 -1.331e-01 0.000e+00 8.279
215 .043e-01 -8.163e-02 5.000e-01 .043e-01 -8.153e-02 0.000e+00 8.279
216 3.138e-01 -2.745e-02 5.000e-01 .138e~01 -2.745e-02 0.000e+00 8.279

END OUTPUT for YEAR = 89 DAY= 262. HOUR= 6 MINUTE = 0

.............................................

2
214 2.855e-01 ~-1.331e-01 5.000e-01
3

WWwNN

Figure 14. Example Output at Meteorological Data Intervals. Single tree segment
option of 6 rings of 36 segments




S TREETHERM MODEL EXAMPLES

Some of the tree model options will be demonstrated by example cases. The me-
teorological data to be used is from a data set associated with Fort Hunter-Liggett,
California, the site of the second year SWOE demonstration. (See Figure 11 for a
list of the data.) Three examples will be discussed. The first is a Single Segment
Option calculation, the second a Multiple Segment Option without leaves consid-
ered, and the third a Multiple Segment Option with leaves. (These examples and
their required data files are included with the source code.)

5.1 Example 1: Single Segment Option

The tree model input file for this case is shown in Figure 15. The example
is 1 meter long in the model global Z-direction. The actual length is arbitrary as
long as it is a finite value. Only the orientation is important for the single segment
option.

The boundary conditions modeled included incoming solar and infrared ra-
diation and surface convection considered. The solar and infrared fluxes were
calculated internally using the Preliminary Atmospheric Radiation Package® as a
result of the string ESTIMATE being included. (The solar and infrared data in the
meteorological input file are ignored in this example.) The shading option is not
available for the single tree segment option. As there are no leaves present, no
leaf properties are required.

The single segment is divided into 6 rings of 36 circular segments. The outer
ring radii in ascending order are: 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12 meters,
respectively. The input temperatures chosen are in degrees Celsius to match the
meteorological data and the model initialization temperatures. Only one material
property is used and the values used are given in Figure 16. Note that temperature
dependent properties are not used (or read) since CONSTANTPROPS equals 1. The
model will use different conductivities for the radial and circumferential directions
since HOMOGENEOUS is set to 0.

The model is initialized to the air temperature at the beginning of the calcula-
tion. In the absence of tree temperature data, any calculation should be “thermally
loaded” before the output times of specific interest. How long is dependent on
many parameters including element resolution, relative changes in the meteorolog-
ical data and material properties. The model should cycle through one full day’s
environmental conditions. This is a guideline only and each model’s requirements
are different.

Temperature histories were output for surface elements near the cardinal com-
pass points. These are plotted in Figure 17.

The changing solar position and intensity is evident in the temperatures for the
east and south locations. The temperatures from the southern element rise and then
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MODEL TYPE TREE
NUMBER NODES
NUMBER TREE ELEMENTS

2
1

METEOROLOGICAL DATA FILE hunt .met

SURFACE BOUNDARY CONDITIONS SOLAR IR CONVECTION NONE
IR ESTIMATE

SOLAR ESTIMATE

NUMBER TREE PROPERTY FILES 1

TIME ZONE 8

LATITUDE 36 DEG O MIN 0.0 SEC
LONGITUDE 121 DEG 19 MIN 0.0 SEC

INPUT TEMPERATURES CELSIUS

OUTPUT TEMPERATURES CELSIUS s
LEAF PROPERTY FILE NONE -

END

PROPERTY FILES
hltree.prop
END

TREE SINGLE SEGMENT
NUMBER RINGS
NUMBER SEGMENTS
OUTER RING RADII

20

36

.015 .030 .045 .060 .075 .090 .105 .120 .135 .150
.165 .180 .195 .210 .225 .240 .255 .270 .285 .300
RING MATERIAL NUMBER 1 11 11111111111111111

END

TREE NODAL COORDINATES
ROTATE Z 0.0 DEG

1:0.0 0.0 0.0

2 : 0.0 0.0 1.0
END
VERTICAL TEMPERATURE PROFILE
NENTRY 2
HEIGHT 0.0 50.0
TEMPERATURE 13.0 13.0
END

TREE OUTPUT CONTROL
NUMBER TEMPERATURE HISTORY 4
TEMPERATURE HISTORY ELEMENTS 685 694 703 712

NUMBER TREE SURFACE ELEMENTS
TREE ELEMENTS

NUMBER TREE ELEMENTS
TREE ELEMENTS

1
1
1
1

Figure 15. Model Input File for

Example 1, a Single Tree Segment Calculation
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Figure 16. Tree Material Pro

lation

CONSTANTPROPS
HOMOGENEQUS

RHO
(P

I

YK

ZK
EMIS
ABS
IRABS

NCP
NKX
NKY
NKZ
NEMIS
NABS

CPTAB

100 200
2900 2900
END

KXTAB

100 200
0.15 0.15
END

KYTAB

100 300
0.30 0.30
END

KZTAB

100 400
0.30 0.30
END

EMISTAB
100 200
1.0 1.0
END

ABSTAB
100 200
1.0 1.0
END

1
0

900.0
2900.0

.1

.3
.3
.80
.85
.00

HOOOO

DN N

perties for Example 1, a Single Tree Segment Calcu-
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Figure 17. Surface Temperature History at Cardinal Points from Example 1 Using
the Single Segment Option

fall off as a function of time as a result of the changes in solar position. The drop
in the temperature of the southern surface element in the mid-morning is due to an
abrupt increase in the wind speed at 1100 hours (see Figure 11).

5.2 Example 2: Multiple Segment Option With No Leaves

This example is for a tree with six parts, four main trunk elements and two
branch elements. Each tree component contain three rings. The tree model input
file for this example is shown in Figure 18. The boundary conditions modeled
are incident solar and infrared radiation, surface convection, and shading due to
branches only. No leaves were included (accomplished by giving the leaf property
file name the case sensitive string NONE.) The material properties used are the
same as for Example 1.

Figure 19 shows a comparison of the temperatures for three surface calculation
elements. Elements # 9 and # 45 are in the same relative position, northwest, and
in similar sized tree segments. Element # 45 is located 0.275 m above element
#9. Element # 10 is located in the same plane (and tree segment) as element # 9
but its relative position is in the southwest. '

Figure 19 shows the temperature histories of the elements with and without the
seif shading option. (The input for the no shade option is shown in Figure 20.)
Note that for no shading, the curves are the same for elements # 9 and # 45 since
the model geometric representation is the same. Element 10 reaches a higher tem-
perature than element # 9 or # 45 for both the no shade and shade since it receives

35




Figure 18.

MODEL TYPE TREE
NUMBER NODES 7
NUMBER TREE ELEMENTS 6

METEOROLOGICAL DATA FILE  hunt262
SURFACE BOUNDARY CONDITIONS SOLAR SHADING IR CONVECTION

IR ESTIMATE

SOLAR ESTIMATE

NUMBER TREE PROPERTY FILES 1

TIME ZONE 8

LATITUDE 36 DEG 0 MIN 0.0 SEC
LONGITUDE 121 DEG 19 MIN 0.0 SEC
INPUT TEMPERATURES CELSIUS

OUTPUT TEMPERATURES CELSIUS

LEAF PROPERTY FILE NONE

END

PROPERTY FILES
hltree.prop
END

TREE NODAL COORDINATES
ROTATE Z 0.0 DEG

(=N Nl
[= NN
O OO

: =0.20 -0.

N N WA

END

TREE ELEMENT CONFIGURATION
TRUNK M 1
TRUNK M 2
TRUNK M 3
TRUNK M 6
TRUNK B 3
TRUNK B 3

DD WN =
BN WN

END

TREE ELEMENT DESIGNATION
: 0.050.10 0.15 .
.05 0.10 0.
.05 0.10 0.
.05 0.10 0.15 .
0.
0.

.05 0.10
.05 0.10

BN W =
QOO0
QO OOOO
B
[ = W SN S SN
[ S S S S

END

VERTICAL TEMPERATURE PROFILE
NENTRY 2

HEIGHT 0.0 50.0
TEMPERATURE 13.0 13.0
END

TREE OUTPUT CONTROL
NUMBER TEMPERATURE HISTORY 8
TEMPERATURE HISTORY ELEMENTS 9 10 11 12 45 46 47 48
NUMBER TREE SURFACE ELEMENTS 4
TREE ELEMENTS 1234
NUMBER TREE ELEMENTS 0
TREE ELEMENTS
END

Model Input File for Multiple Segment Option, Example 2
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Figure 19. Comparison of Temperature Histories at Three Loéations to Demonstrate
Shading Effects for the Multiple Segment Option, Example 2

more solar energy. Element # 9 and element # 45 have similar temperatures for
the shading case since the shading branches (at vertical height Z=0.2 m) do not
effectively shade those locations when the solar intensity peaks for element # 9
and # 45. The effect of shading, though, is evident in the comparison of element
# 10’s temperature history for the shading and the no shade case. One of the
shading branches is oriented towards the southwest and its effect on the prediction
of element # 10’s temperature for the shading case can be seen starting about 1200
hours.

5.3 Example 3: Multiple Tree Segments With Leaves

This example uses the same meteorological data file in examples 1 and 2. The
leaf properties used are those shown in Figure 10. Two multiple tree segment
models were run to demonstrate the effects of shading by leaf clusters on the
temperature history of a tree element. Figures 21 and 22 show the input files for
the no shading case and the self shading case with leaves included.

Figure 23 shows a comparison of the temperature history of a tree element with
and without self-shading considered. Also, shown on the Figure are the calculated
leaf temperatures and the air temperature. The geometries used were to demonstrate
the impact of the self-shading by leaf clusters. For this example, the self-shading
by leaf clusters resulted in a maximum difference of about 5°C in the temperature
of the surface elements.

37




MODEL TYPE TREE

NUMBER NODES 7

NUMBER TREE ELEMENTS 6

METEOROLOGICAL DATA FILE hunt262

SURFACE BOUNDARY CONDITIONS SOLAR SHADING IR CONVECTION

IR ESTIMATE

SOLAR ESTIMATE

NUMBER TREE PROPERTY FILES 1

TIME ZONE 8

LATITUDE 36 DEG 0 MIN 0.0 SEC
LONGITUDE 121 DEG 19 MIN 0.0 SEC
INPUT TEMPERATURES CELSIUS

OUTPUT TEMPERATURES CELSIUS

LEAF PROPERTY FILE NONE

END

PROPERTY FILES
hltree.prop
END

TREE NODAL COORDINATES
ROTATE Z 0.0 DEG
1:0.

N e W
t
[=)
]
o
(=]
]
(=]
(=]
]
[=]

END

TREE ELEMENT
TRUNK M
TRUNK M

co
1
2
TRUNK M 3
6
3
3

FIGURATION

TRUNK M
TRUNK B
TRUNK B

DN WN =
S NNOWN =

END

TREE ELEMENT DESIGNATION
.05 0.10 0.15
.05 0.10 0.15
.05 0.10 0.15
.05 0.10 0.15
.05 0.10 0.15
.05 0.10 0.15 .,

BN WN -
COOOO0CO
COOCOO0CO
b b b d b
. b b
. e b b b

END

VERTICAL TEMPERATURE PROFILE
NENTRY 2

HEIGHT 0.0 50.0
TEMPERATURE 13.0 13.0
END

TREE OUTPUT CONTROL
NUMBER TEMPERATURE HISTORY 8
TEMPERATURE HISTORY ELEMENTS 9 10 11 12 45 46 47 48
NUMBER TREE SURFACE ELEMENTS 4
TREE ELEMENTS 1234
NUMBER TREE ELEMENTS 0
TREE ELEMENTS
END

Figure 20. Input File for Example 2 for a Multiple Tree Segment Calculation With
Shading Not Considered
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MODEL TYPE TREE

NUMBER NODES 3

NUMBER TREE ELEMENTS 2

METEOROLOGICAL DATA FILE hunt262

SURFACE BOUNDARY CONDITIONS SOLAR NONE IR CONVECTION

IR ESTIMATE
SOLAR ESTIMATE
NUMBER TREE PROPERTY FILES 1
TIME ZONE 8
LATITUDE 36 DEG 0 MIN 0.0 SEC
LONGITUDE 121 DEG 19 MIN 0.0 SEC
INPUT TEMPERATURES CELSIUS
OUTPUT TEMPERATURES CELSIUS
LEAF PROPERTY FILE leaf.example
END

PROPERTY FILES
hltree.prop
END

TREE NODAL COORDINATES
ROTATE Z 0.0 DEG
1:0.0 0.0 0.0
2:0.0 0.0 2.00
3:-2.00 0.0 4.00
END

TREE ELEMENT CONFIGURATION
1 TRUNK M 1 2
2 TRUNKM 23

END

TREE ELEMENT DESIGNATION
1:0.0560.10 0.15 .0 : 1 1 1
2 :0.050.10 0.15 .20 : 111

END

VERTICAL TEMPERATURE PROFILE
NENTRY 2
HEIGHT 0.0 50.0
TEMPERATURE 13.0 13.0

END

TREE OUTPUT CONTROL
NUMBER TEMPERATURE HISTORY 8
TEMPERATURE HISTORY ELEMENTS 9 10 11 12 21 22 23 24
NUMBER TREE SURFACE ELEMENTS 1
TREE ELEMENTS 2
NUMBER TREE ELEMENTS 1
TREE ELEMENTS 2

Figure 21. Input File for Example 3 With Self Shading Not Considered
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MODEL TYPE TREE -
NUMBER NODES 3
NUMBER TREE ELEMENTS 2

METEOROLOGICAL DATA FILE hunt262
SURFACE BOUNDARY CONDITIONS SOLAR SHADING IR CONVECTION
IR ESTIMATE
SOLAR ESTIMATE
NUMBER TREE PROPERTY FILES 1

TIME ZONE 8
LATITUDE 36 DEG 0 MIN 0.0 SEC
LONGITUDE 121 DEG 19 MIN 0.0 SEC
INPUT TEMPERATURES CELSIUS
OUTPUT TEMPERATURES CELSIUS
LEAF PROPERTY FILE leaf.example

END

PROPERTY FILES
hltree.prop
END

TREE NODAL COORDINATES
ROTATE Z 0.0 DEG

1:0.0 0.0 0.0

2:0.0 0.0 2.00

3 :-2.00 0.0 4.00
END

TREE ELEMENT CONFIGURATION
1 TRUNKM 12
2 TRUNKM 23

END

TREE ELEMENT DESIGNATION
1:0.050.100.15 .0 : 1 1 1
2:0.0560.100.15 .20 : 1 11

END
VERTICAL TEMPERATURE PROFILE
NENTRY 2
HEIGHT 0.0 50.0
TEMPERATURE 13.0 13.0
END

TREE OUTPUT CONTROL
NUMBER TEMPERATURE HISTORY 8
TEMPERATURE HISTORY ELEMENTS 9 10 11 12 21 22 23 24
NUMBER TREE SURFACE ELEMENTS 1

TREE ELEMENTS 2
NUMBER TREE ELEMENTS 1
TREE ELEMENTS 2

Figure 22. Input File for Example 3 for With Shading Considered, Including
Shading by Leaf Clusters
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Figure 23. Comparison of Temperature History Results From Example 3 With and
Without Self-Shading by Branches and Leaf Clusters Considered

41




6 MODEL ASSUMPTIONS AND LIMITATIONS
This section examines the impact of various models assumptions on the current
version of the tree model. Also, limitations in the model are discussed.

6.1 Branched Connections — Longitudinal Conduction Effects

The initial implementation of the tree model considered provisions for additional
element attachments at branch (non-longitudinal directions) connections above the
normal allowed amounts (six). This was more of a geometric consideration rather
than an appreciation of the conduction effects at connections of long thin cylindrical
segments. In the example shown in Figure 24, the branch segment #3 is defined
by the nodal points A and B. The thermal calculations over this segment are
done along plane 1-1 and at the radial mid-point of the calculation elements for
a tree model. In most cases, the effects at B from the longitudinal conduction
contributions from end connections at C' and A will not be significant in comparison
to the radial and circumferential conduction effects. This assumes length AB to
be “long” in comparison to its diameter.

From a computational as well as a modeling input viewpoint, any reduction in
element attachment requirements is welcomed. To demonstrate the effects of lon-
gitudinal conduction on thermal response, a set of representative calculations were
made. For these calculations, three segments of cylindrical shape were modeled,
as shown in Figure 25. Segments #1 and #3 were subjected to a temporally and
spatially varying heat flux corresponding to a typical solar variation and the tem-
perature history of the surface elements in segment #2 studied. No other boundary
conditions were applied.

Calculations were performed using two values for the outer diameters of the
segments, 0.15 and 0.60 m. Figures 26 to 29 show the temperatures of the surface
elements as a function of time for the calculations made with an outer diameter of
0.15 m and Figures 30 to 33 show the results for an outer diameter of 0.6 m. In
each case, results are given for segments with three different lengths.

The salient point of these figures is the relative temperature rise which arises due
to longitudinal conduction. These show that if the calculation location (Section 1-
1, point B in Figure 25) is more than ~ 0.25 to 0.5 m from the connection
interface, longitudinal conductivity effects are not that significant. The conclusion
drawn from these calculations that longitudinal conduction effects are significantly
reduced as the calculation location becomes further from the connection interfaces
will be applied to the first branch segment off main elements (for example, a
branch to a trunk). Since most branch lengths modeled are significantly greater
than the effective logitudinal conduction lengths determined, it is reasonable to
assume no net heat exchange occurs at the interface between branch calculation
elements and main elements. This will only apply to first branched connection off
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Figure 24. (a.) Typical Branch Connection and (b.) Cross Sectional View of
Section 1-1
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Figure 25. (a.) Three Segment Tree Model and (b.) Location of Surface Elements
Used to Study Impact of Longitudinal Conductivity

a main element and not at subsequent normal axial connections. The assumption
that no net heat exchange occurs at the interface of the first branch connection off a
main element allowed a significant reduction in geometric modeling development
and will reduce the computational expense of complex models. Note that if mass
transport of moisture is required for a subsequent tree model, geometric connection
information will be needed at these interfaces.

There may be combinations of geometries and material properties where the
assumption that longitudinal conduction effects at the first branch interface are not
significant is no longer valid. In general, the assumption that no net heat exchange
due to conduction between a main element and the first branch element off it will
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hold for the range of tree geometries and properties expected.

6.2 Ray Casting

The ray casting scheme is used to calculate the area of a tree element illuminated
by the direct solar component and modified by any attenuation due to leaf effects.
Each ray has an associated grid area as shown in Figure 34. The grid resolution
is currently a fixed value. However, if a tree element is smaller than the grid
resolution, that associated grid area may be subdivided into sub-grid areas. More
rays can then be cast within the normal grid element.

The number of sub-grids is also a fixed value. However, elements below a
certain size can be ignored.

As the model becomes more complex and the relative diameters of the elements
becomes more diverse, so does the computational burden of the ray casting proce-
dure. There is no best combination of grid resolution, number of sub-grids allowed
and which size elements to ignore. Each model will have its own requirements.
Smaller elements may be in an area of interest but including them may make the
computation effort unfeasible. Not including them will negate their shading effect.

It is possible to model the tree without shading to identify the locations of
interest. Then a subset of the full tree could be analyzed with the shading included.

The variables defining grid and subgrid spacing as well as the minimum size
(diameter) of tree segments should be input variables, as the grid requirements will
change with model configuration. These variables are identified in routine sol_tree
as gridres, limit and TEMP. They should be changed to suit each tree model’s
requirements.

The point of this section is to state that the single most computationally intensive
procedure in modeling the tree is the shading/attenuation implemented by the ray
casting scheme. The user should invoke this option with care on complex models.

6.3 Convection

The surface convective term is derived from a correlation of data on cylinders
in a cross-flow. It does not yet account for wind direction or the incidence angle
from the wind vector to the cylinder longitudinal axis. Also, the free convective
term has not been implemented for this model version.

Some determination of the effects of surface roughness should be made. Most
test data for convective coefficient correlation of cylinders is done for a constant
wall temperature or uniform heating rate. A tree segment will have non-uniform
heating due to the solar intensity and spatial variation leading to varying surface
temperatures.

The convective term will vary longitudinally as well as circumferentially due
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Figure 26. Temperature of Element 21 (OD = 0.15 m) as a Function of Time for
Three Different Segment Lengths
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Figure 27. Temperature of Element 22 (OD = 0.15 m) as a Function of Time for
Three Different Segment Lengths
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Figure 28. Temperature of Element 23 (OD = 0.15 m) as a Function of Time for

Three Different Segment Lengths
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Figure 29. Temperature of Element 24 (OD = 0.15 m) as a Function of Time for

Three Different Segment Lengths
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Figure 30. Temperature of Element 21 (OD = 0.6 m) as a Function of Time for
Three Different Segment Lengths

20 LERNRL L R E L S BN BN S B A A S e AL B | T 1 1
- Calculation Element 22 h
- Tree Segment 2 .
- OD = 0.60 m ]
~15 | L1=L3=L2 a
(& 8 =
[-]
S .
(Y] ™ .
% = -4
o 10 |- ~
< - .
X o0 60000 2= 0.25 m |
a. i Bass8 L2= 0.50 m b
= i Aaadh | 2= 0.75 m 7
w S| -
o R 4
o N NS S N TR TN U (VU TS TR T U WA YN W N NN SN O O I )
0 4 8 12 16 20 24
HOUR

Figure 31. Temperature of Element 22 (OD = 0.6 m) as a Function of Time for
Three Different Segment Lengths
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Figure 32. Temperature of Element 23 (OD = 0.6 m) as a Function of Time for
Three Different Segment Lengths
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Figure 33. Temperature of Element 24 (OD = 0.6 m) as a Function of Time for
Three Different Segment Lengths
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Figure 34. Subdivision of Normal Ray Casting Grid Unit for Element Resolution

to the change in tree cross-sections. The model assumes a constant cross-section
for a given tree element.

6.4 Infrared Flux

In the present version of TREETHERM, the downward infrared flux value is
assumed to be spherically symmetric. A separate term for the upwelling infrared
flux from the underlying ground is not modeled. It is being proposed to incorporate
upwelling infrared radiation in the next version of TREETHERM! but, seeing that
this will require the coupling of TREETHERM to a surface thermal model, such as
the SWOETHRMS?, and the inclusion of the impact of tree shading on the ground
energy budget, this task was beyond the scope of the current effort. However, the
neglect of upwelling surface infrared radiation on the tree energy budget is not
considered to be a major deficiency in the model.
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6.5 Solar Flux

When the shading option is invoked, the ray casting scheme is implemented at
the mid-point of the meteorological data time interval. The calculated illuminated
area is assumed constant over that interval. Reflections from within or without the
tree model are not included in this version.

6.6 Tree Segments Resolution

The multiple segment version of the tree model has the current cross-section
resolution of 3 rings of 4 circular segments. The thickness of the rings can vary
and each ring may have a different set of material properties. This resolution is
not intended as a limit or a guideline, but as a starting point. It was picked as the
minimum amount that could show the time and spatial effects of the solar position.

It is intended as the model evolves to allow each tree segment to vary its
resolution based on size, material makeup, and expected temperature distribution.
This, however, while having more flexibility will require more input preparation.

An option to the tree model is the single tree segment. This option can be
used to help determine bounds for cross-sectional model resolution. It currently
allows a range of 3 to 20 rings and 4 to 36 circular segments per ring. Each
ring can be a different material. Varying the cross-section element layout for this
option, along with the range of the material properties expected will point to the
resolutions required in the multiple segment model. This will allow higher cross-
section resolution in the areas of interest, while keeping the overall model geometry
in place.

6.7 Phase Change

Currently, no phase change is considered in the model. Implementing a constant
temperature freeze/thaw cycle would only require a modification to the conduction
parameters and a tracking of the net energy at the elements undergoing freeze/thaw.

An alternative to this is to put the effects into the temperature dependent spe-
cific heat table over a finite temperature range. Some method of insuring that no
temperature change skipped over this interval would be necessary. Any evapora-
tive or gaseous diffusion within tree segments (trunk, branch, etc.) would require
a mass balance scheme.

6.8 Connections At A Node

There is a current limit of 3 connections at a node. This is an arbitrary limit
whose original purpose has been circumvented by the conclusion from the study of
longitudinal conduction effects (see Section 6.1). Increasing this limit will require
some minor code modification.
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6.9 Radiation Interchange

Radiant heat transfer between other objects was not implemented in this version
of the tree model. Since the ground infrared and interaction between leaves and
branches were not considered, this feature is not yet required. The framework for
this item exists in the current code but is not currently invoked. Generating the

surface view factors for this implementation will be the most costly in terms of
development time.
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